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aUniversité Paris-Saclay, CEA, Service d’Étude des Matériaux Irradiés, 91191, Gif-sur-Yvette, France
bMINES ParisTech, PSL University, MAT – Centre des matériaux, CNRS UMR 7633, BP 87 91003 Evry, France

Abstract

A strain gradient void-driven ductile fracture model of single crystals is proposed and applied to

simulate crack propagation in single and oligo-crystal specimens. The model is based on a thermody-

namical framework for homogenized porous solids unifying and generalizing existing thermodynamical

formulations. This porous single crystal ductile fracture model relies on a multi-surface representa-

tion of porous crystal plasticity in which the standard Schmid law is enhanced to account for porosity,

including void growth and void coalescence mechanisms. A new criterion to detect the onset of void

coalescence in porous single crystals is proposed and validated by comparison to porous single crystal

unit-cell simulations. This criterion can either be used as an additional yield surface or it can be used

to follow the well established Gurson–Tvergaard–Needleman approach based on an effective porosity

to model void coalescence. The strain gradient formulation relies on a Lagrange multiplier based

relaxation of strain gradient plasticity. Material points simulations are performed in order to depict

the elementary features of the porous single crystal ductile fracture model without strain gradient

effects. The model is then applied to the simulation of plane strain single crystal specimen loaded in

tension up to failure. The regularization ability and convergence with mesh refinement are demon-

strated. Finally two- and three-dimensional simulations of ductile fracture of single and oligo-crystal

specimens are presented. The significant influence of plastic anisotropy on the crack path, ductility

and fracture toughness is highlighted.

Keywords: Ductile failure, Crystal plasticity, Strain gradient plasticity, Fracture toughness

anisotropy

1. Introduction

Modeling ductile fracture of metallic alloys is a major topic in the field of mechanical engineering.

Multiple mechanisms can lead to ductile fracture (Noell et al., 2018) that is commonly characterized by

significant local inelastic deformation prior to material separation and formation of free surfaces. One

main mechanism is related to nucleation, growth and coalescence of voids in the bulk material. The5

seminal works of McClintock (1968); Rice and Tracey (1969); Green (1972); Gurson (1977); Rousselier
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(1981); Thomason (1985) paved the way to the derivation of continuum mechanics models of ductile

fracture provoked by combined plastic deformation and evolution of voids. The key ingredient of these

models consists in introducing a damage scalar variable, representing the volume fraction of voids.

The evolution of the damage variable is driven by the local loading state of the material. In order to10

efficiently reproduce failure after significant plastic deformation, these models rely on an elegant way

of decreasing the load bearing capacity of the material when the amount of damage increases. This is

accomplished by deriving yield potentials for which the elastic domain shrinks when damage increases.

This approach encompasses two major requirements: (1) to define the appropriate evolution of the

damage variable and (2) to get the appropriate dependency of the yield criteria upon damage. In the15

context of porous plasticity (see the reviews by Benzerga and Leblond (2010); Besson (2010); Pineau

et al. (2016)), increase of damage is mainly governed by void nucleation, growth and coalescence.

Some authors also proposed extensions involving contribution of void shearing in the effective damage

variable evolution (Nahshon and Hutchinson, 2008), although in that way, in general, the link of the

damage variable to the void volume fraction is lost. Deriving effective yield criteria of porous solids20

was achieved by using mainly three techniques. The first, conducted by Gurson (1977), involves limit

analysis of an idealized porous unit-cell. The second, proposed by Rousselier (1981, 1987, 2001),

calls upon thermodynamical considerations (Germain et al., 1983). The third, followed for example

by Danas and Castañeda (2009) is based on variational homogenization methods. Early models

were extensively enriched to improve their accuracy for instance by introducing fitting parameters25

(Tvergaard, 1981, 1982; Tvergaard and Needleman, 1984). Extensions were also developed to account

for shape (Gologanu et al., 1995), orientation (Cao et al., 2015) and size of voids (Dormieux and

Kondo, 2010; Gallican and Hure, 2017). In the homogenization procedure, the behaviour of the so-

called matrix material that surrounds the voids plays a paramount role. Gurson originally considered

an isotropic rigid perfectly plastic matrix material. Gurson’s approach was later generalized to take30

isotropic hardening and kinematic hardening into account (Mear and Hutchinson, 1985; Besson and

Guillemer-Neel, 2003; Morin et al., 2017). Other studies focused on deriving effective yield criteria of

porous materials with a plastic anisotropic matrix material (Benzerga and Besson, 2001; Morin et al.,

2015; Keralavarma and Chockalingam, 2016). Recent studies also investigate the role of size-effects in

porous metals (Monchiet and Kondo, 2013; Holte et al., 2019; Niordson and Tvergaard, 2019; Scherer35

et al., 2019).

In most metallic alloys voids nucleate at inclusions or precipitates by debonding or cracking

(Babout et al., 2004). These defects can be within the bulk of grains. In this case, voids are individu-

ally surrounded by single crystals at short or even intermediate distances. Recent model experiments

were carried out on polycrystal stainless steel tensile specimens containing holes drilled by focused40

ion beam (FIB) inside grains (Barrioz et al., 2019). These experiments confirmed the importance

of crystal orientation on the plastic behaviour of the material surrounding the voids. Although the

anisotropic nature of plasticity in single crystals could be captured to some extent by anisotropic

yield criteria (Hill, 1948; Nouailhas and Cailletaud, 1992; Gambin, 1992), such approximations are
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known to fail for some complex loading paths. Furthermore, single crystal porous unit-cell simulations45

(Potirniche et al., 2006; Ha and Kim, 2010; Yerra et al., 2010; Han et al., 2013; Ling et al., 2016; Sel-

varajou et al., 2019) have shown the strong effect of crystal plasticity anisotropy on void growth and

coalescence. Nevertheless, since the early work by Mori and Meshii (1969), only a few studies were

devoted to develop models for porous single crystals able to describe the damage process up to failure.

Single crystal void growth models were settled by Crépin et al. (1996); Han et al. (2013); Mbiakop50

et al. (2015); Ling et al. (2016); Song and Castañeda (2017); Paux et al. (2018). Even fewer studies

deal with void coalescence in single crystals (Yerra et al., 2010; Hure, 2019). A comprehensive model

combining void growth and void coalescence criteria in porous single crystals is still lacking. Such a

model would permit to assess the role of crystal plasticity anisotropy on ductility and toughness at

the scale of the microstructure of metallic alloys.55

Most ductile fracture models predict a softening regime at incipient final failure. Softening occurs

in these models on account of damage variable increase which in turn reduces the size of the elastic

domain. As a result softening induces localization and localization promotes damage acceleration.

Although such a behaviour might be in agreement with underlying physical mechanisms it also en-

tails the major issue of causing ill-posedness of the boundary value problem as reported by Bažant60

et al. (1984); Lorentz and Benallal (2005). From a numerical point of view, solving the governing

equations, for example by finite elements, results in the absence of convergence of the results when

the mesh size is decreased. Several approaches were followed to bypass or overcome this issue. In

(Xue et al., 2010; Achouri et al., 2013) mesh size is treated as a material parameter used to control

the characteristic length of post-localization regime. Another technique used to introduce a material65

length scale consists in using the intrinsically size-dependent phase field method as in (Miehe et al.,

2016). Alternatively, theories developed in the context of non-local continua were also successfully

applied in order to regularize localization predicted in ductile fracture simulations. Non-local the-

ories, based either on integral or gradient formulations, naturally incorporate one or several length

scales. In the context of ductile fracture, these lengths can be used to drive the evolution of the size70

of the damaged area in the post-localization regime. Size-dependent modelling of ductile fracture not

only amounts to the choice of a non-local theory, but also to the choice of one or several appropriate

non-local variables. Some authors used the damage variable to carry non-local effects (Tvergaard and

Needleman, 1995; Ramaswamy and Aravas, 1998; H̊akansson et al., 2006). Alternatively others used

as non-local variables strain quantities such as the volumetric equivalent plastic strain in (Zybell et al.,75

2014; Nguyen et al., 2020), the equivalent plastic strain in (Payet et al., 2012; Lorentz et al., 2008;

Nguyen et al., 2020), the strain tensor in (Enakoutsa and Leblond, 2009) or the matrix equivalent

plastic strain in (Nguyen et al., 2020). It is common that several non-local variables are used. Despite

the more important numerical effort it requires, it is mostly necessary in order to be able to regularize

localization for all types of loading paths (Nguyen et al., 2016, 2020).80

The thermodynamics of continuum damage mechanics is extensively studied in the domain of

geophysics and civil engineering, where rocks and soils contain defects (pores, cracks, etc) which may
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or not be filled with fluids influencing their mechanical behaviour (Chaboche, 1988; Coussy, 2004;

Kachanov, 2013). However literature covering thermodynamics of porous metallic alloys remains very

scarce. Yet in his seminal work Rousselier (1981) was able to design a mechanical model of ductile85

failure based on very simple thermodynamical considerations. Furthermore similarities between this

model and models derived with different approaches are remarkable. A few other thermodynamical

settings were developed in (Enakoutsa et al., 2007; Besson, 2009; Bouby and Kondo, 2017; Pascon and

Waisman, 2020). Yet, these models rely on assumptions and have limitations discussed in (Scherer,

2020), in which a unifying framework is also proposed.90

The first and foremost challenge tackled in the present work is to address the formulation, im-

plementation and application of a newly developed ductile fracture model for porous crystals. The

main novel achievements of this work are numerical simulations performed with this model to assess

the significant role of crystal plasticity anisotropy on ductility and toughness at the scale of the mi-

crostructure. The proposed model is implemented in a finite strain framework on the basis of the95

void growth model developed in (Han et al., 2013; Ling et al., 2016) and also used and extended

by (Khadyko et al., 2021; Frodal et al., 2021). Then, an original coalescence criterion, adapted for

intervoid necking in single crystals, is proposed and validated. In keeping with the multi-mechanism

plasticity framework proposed by Besson (2009), void growth yield criteria will be combined to a

void coalescence criterion to obtain a so-called multi-surface model. This method is compared to the100

well established Gurson–Tvergaard–Needleman (Tvergaard and Needleman, 1984) approach for void

growth and coalescence which relies on an effective porosity. The present work takes advantage of the

strain gradient crystal plasticity model developed (without damage) and compared to the micromor-

phic approach in (Scherer et al., 2020). This finite strain formulation of strain gradient plasticity is

based on a Lagrange multiplier method already successfully applied by Zhang et al. (2018) for isotropic105

materials in the context of ductile fracture. For numerical efficiency a single scalar non-local variable

is used, although from a theoretical point of view a tensorial non-local variable could be considered.

A sound thermodynamical framework for porous plasticity which unifies existing theories was derived

in (Scherer, 2020). This framework works as a prerequisite in order to be able to introduce strain

gradient effects and couplings in the constitutive equations of the proposed porous crystal plasticity110

model.

The outline is as follows. In Section 2 a thermodynamical framework designed for multi-mechanism

strain gradient porous plasticity is presented. The chosen gradient enhanced principle of virtual

power, free energy potential and dissipation potentials are exposed in order to derive an original

comprehensive model of ductile fracture in single crystals. Void growth and the newly proposed void115

coalescence flow potentials are described in Section 3 with their associated evolution equations. In

Section 4 the single crystal material behaviour is detailed and the void coalescence onset criterion is

validated. Two different approaches to account for void coalescence are then discussed on the basis

of material points simulations. The ability of the proposed model to regularize ductile fracture is

then demonstrated. In Section 5 2D and 3D ductile fracture simulations of single and oligo-crystals120
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structures are presented. The main outcomes and prospects are listed in Section 6.

2. Multi-mechanism based strain gradient porous plasticity framework

A multi-mechanism deformation framework for homogenized porous materials established at finite

strain is presented in the context of growth and coalescence of voids in materials with non-local

gradient effects. Note that this framework is well suited for, but not restricted to crystal plasticity125

and can thus be used for other applications in which multiple plastic deformation mechanisms are

involved.

2.1. Void growth and void coalescence in single crystals

A multiplicative decomposition of the deformation gradient F∼ = ∂x /∂X in an elastic part E∼

and a plastic part P∼ is assumed: F∼ = E∼ .P∼ . The elastic deformation rate L∼
e = Ė∼ .E∼

−1 and plastic130

deformation rate L∼
p = Ṗ∼ .P∼

−1 are introduced such that L∼ = Ḟ∼ .F∼
−1 = L∼

e + E∼ .L∼
p.E∼

−1. Following

the work developed by Ling et al. (2016), a void growth deformation mechanism is considered for

each slip system of the crystal. An additional deformation mechanism is introduced to account for

void coalescence. Coalescence is a phenomenon which mostly involves activation of many slip systems

inside the ligaments separating coalescing voids (Barrioz et al., 2019). Coalescence is therefore not135

decomposed in a sum of contributions of individual slip systems. Therefore, for a crystal having N

slip systems, the inelastic deformation rate is

Ṗ∼ .P∼
−1 =

N∑

s=1

L∼
p
s

+L∼
p
c

(1)

where the terms in the sum account for plastic slip and void growth on each slip system, and L∼
p
c

is the

inelastic rate associated to void coalescence. For each deformation mechanism a scalar deformation

rate can be introduced. They will be denoted γ̇s for void growth and γ̇c for void coalescence. Note140

that γ̇c is not to be interpreted as a slip rate, but more as an equivalent plastic strain rate, since void

coalescence is not a mechanism decomposed on slip systems. An accumulated inelastic deformation

variable is introduced as

γcum =

∫ t

0

(
N∑

s=1

|γ̇s|+ |γ̇c|
)

dt (2)

The flow rules for void growth and coalescence are presented in Section 3.

2.2. Gradient enhanced principle of virtual power145

In the spirit of the model developed by Wulfinghoff and Böhlke (2012) it is assumed that the

gradient effects operate on the accumulated plasticity scalar variable γcum. Following (Fleck and

Hutchinson, 1997; Forest and Sievert, 2003; Gurtin and Anand, 2009), upon neglecting the contribution

of body forces, for any material subset D0 and its boundary ∂D0, in the reference configuration, an

enriched principle of virtual power is stated
∫

D0

(
S∼ : Ḟ∼ + Sγ̇γcum +M .K̇

)
dV0 =

∫

∂D0

(T .u̇ +Mγ̇cum) dS0 ∀u̇ , ∀γ̇cum, ∀D0 (3)
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where dS0 and dV0 represent infinitesimal surface and volume elements respectively. S∼ is the first

Piola-Kirchhoff (Boussinesq) stress tensor related to the Cauchy stress tensor, σ∼ , by S∼ = (ρ0/ρ)σ∼F∼
−T .

Higher order stress scalar S and vector M are work conjugate to γcum and K = Grad γcum. The

power of internal forces on the left-hand side of Eq. (3) is in equilibrium with the power of contact

forces on the right-hand side. The traction vector is T and a higher order traction scalar M is dual150

to γcum. From Eq. (3) one can develop the following balance equations and boundary conditions

DivS∼ = 0 ∀X ∈ D0 and T = S∼ .n 0 ∀X ∈ ∂D0 (4)

DivM − S = 0 ∀X ∈ D0 and M = M .n 0 ∀X ∈ ∂D0 (5)

where n 0 refers to the outward unit surface normal.

2.3. Gradient enhanced free energy potential

The first step to the definition of the material behaviour is the choice of a specific free energy

density potential which depends on the state variables. For the present model the state variables

are the elastic Green-Lagrange strain measure E∼
e
GL

= (1/2)
(
E∼
T .E∼ − 1∼

)
, the accumulated plastic

deformation γcum, its Lagrangian gradient K , one hardening variable rs per slip system s and the

porosity f . The general form of the specific free energy potential can be written as follows

ψ
(
E∼
e
GL
, γcum, γχ,K , rs, f

)
= ψe

(
E∼
e
GL
, f
)

+ ψhf (γcum, r
s, f) + ψg (γcum, γχ,K , f) + ψf (f) (6)

where ψe, ψhf , ψg and ψf represent energy contributions of elasticity, strain hardening, strain gradient

hardening and porosity respectively. For the sake of simplicity the dependence to f is dropped in the

following. For a detailed discussion on this topic the reader is referred to Enakoutsa et al. (2007);

Besson (2009); Bouby and Kondo (2017); Pascon and Waisman (2020); Scherer (2020). Quadratic

potentials are used for the elastic and strain gradient contributions as follows

ψ
(
E∼
e
GL
, γcum,K , rs

)
=

1

2ρ]
E∼
e
GL

: C
≈

: E∼
e
GL

+ ψh(rs, γcum) +
1

2ρ0
K .A∼ .K (7)

The scalar ρ0 and ρ] = ρ0/det
(
P∼
)

respectively represent the volumetric mass density in the initial and

intermediate configuration of the body. The intermediate configuration is defined as the configuration

obtained after transformation by P∼ , while the current configuration is obtained after transformation

by F∼ . Note that in the context of porous plasticity det
(
P∼
)
6= 1 in general. ρ] is directly linked to the

porosity by the relation ρ]/ρ0 = 1/det
(
P∼
)

= (1− f)/(1− f0), with f0 the initial porosity. Yet, since

the dependence of ψ with respect to f is omitted, the volumetric mass density in the intermediate

configuration ρ] enters Eq. (7) as a parameter, but not as variable. The material parameter A∼ is

a second order tensor of higher order moduli. For a material with cubic symmetry A∼ reduces to

A1∼, where A is the single higher order modulus in this case. From a numerical perspective, the

implementation of such a formulation is challenging. The behaviour of a material point is no longer

independent from the value of the internal variables in its neighbourhood. The gradient of γcum

enters indeed the constitutive equations. In order to overcome this difficulty the variable γcum can be
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duplicated in an auxiliary variable γχ treated as an additional degree of freedom (Zhang et al., 2018).

Both variables have the same physical interpretation, but, in a finite element setting for instance, the

former is defined at integration points while the latter is defined at nodes. In order to enforce weakly

the equality of these variables, the free energy density is extended with two additional terms as

ψ
(
E∼
e
GL
, γcum, γχ,K χ, r

s, λ
)

=
1

2ρ]
E∼
e
GL

: C
≈

: E∼
e
GL

+ ψh(rs, γcum)

+
A

2ρ0
K χ.K χ +

λ

ρ0
(γcum − γχ) +

µχ
2ρ0

(γcum − γχ)2 (8)

where λ is a Lagrange multiplier which enforces γχ and γcum to be equal and µχ is a Lagrangian

penalization modulus enhancing coercivity of the model. The gradient of γcum is now replaced by the155

gradient of the auxiliary variable K χ = Grad γχ. This formulation can be interpreted as a way of

imposing an internal constraint on γχ (Bertram and Glüge, 2016). From the 1-st and 2-nd principle

of thermodynamics the Clausius-Duhem inequality is written

d =
S∼
ρ0

: Ḟ∼ +
S

ρ0
γ̇χ +

M

ρ0
.K̇ χ − ψ̇ ≥ 0 (9)

The first term of equation Eq. (9) can be decomposed into elastic and plastic contributions. The

mechanical dissipation therefore becomes

d =

(
Π∼
e

ρ]
− ∂ψ

∂E∼
e
GL

)
: Ė∼

e

GL
+

(
S

ρ0
− ∂ψ

∂γχ

)
γ̇χ +

(
M

ρ0
− ∂ψ

∂K χ

)
.K̇ χ

+
Π∼
M

ρ]
:
(
Ṗ∼ .P∼

−1
)
−

N∑

s=1

∂ψh
∂rs

ṙs − ∂ψ

∂γcum
γ̇cum −

∂ψ

∂λ
λ̇ ≥ 0

(10)

where Π∼
e is the second Piola-Kirchhoff stress tensor defined by Π∼

e = (ρ]/ρ)E∼
−1.σ∼ .E∼

−T =

(ρ]/ρ0)E∼
−1.S∼ .P∼

T with respect to the intermediate configuration and Π∼
M is the Mandel stress tensor160

defined by Π∼
M = E∼

T .E∼ .Π∼
e. The following state laws are adopted

Π∼
e = ρ]

∂ψ

∂E∼
e
GL

= C
≈

: E∼
e
GL

(11)

S = ρ0
∂ψ

∂γχ
= λ− µχ(γcum − γχ) = ∆χ − µχγcum (12)

M = ρ0
∂ψ

∂K χ

= AK χ (13)

For convenience the scalar stress ∆χ = λ + µχγχ is introduced. By definition ∂ψ/∂λ must vanish

when the constraint γcum = γχ is met therefore

∂ψ

∂λ
λ̇ = (γcum − γχ)

λ̇

ρ0
= 0 (14)

and the residual mechanical dissipation follows

d =
Π∼
M

ρ]
:
(
Ṗ∼P∼

−1
)
−

N∑

s=1

∂ψh
∂rs

ṙs −
(
µχγcum −∆χ

ρ0
+

∂ψh
∂γcum

)
γ̇cum (15)
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Here it is postulated that rates of hardening variables are proportional to slip rates on each slip system,

i.e. ṙs = gs(r
s)|γ̇s|. The thermodynamic forces are defined as165

Rs
ρ]

=
∂ψh
∂rs

gs(r
s) (16)

Rcum
ρ]

=
∂ψh
∂γcum

(17)

The strain gradient term ∆χ plays therefore the role of an isotropic hardening or softening contribution

to the mechanical dissipation.

2.4. Gradient enhanced dissipation potentials

In the present framework the dissipation potential is a function of thermodynamical forces and the

state variables can intervene as parameters. For the void growth and void coalescence mechanisms170

the individual potentials for the mechanisms i = J1, N + 1K are

Ωi = Ωi

(
Π∼
M

ρ]
,
Ri
ρ]
,
Rcum
ρ]

;E∼
e
GL
, ri, γcum, γχ, λ

)
= Λ(φi) (18)

where Λ is the viscosity function and φi is the flow potential associated to mechanism i. Flow potentials

for void growth and void coalescence in porous (visco-)plastic single crystals are described in following

section.

3. Porous crystal (visco-)plasticity175

3.1. Void growth

For void growth mechanisms in single crystals, an extension of the implicit definition of effective

resolved shear stresses τs∗ established at small strains for porous single crystals by Han et al. (2013)

and extended to finite strains by Ling et al. (2016) is adopted

τs∗ such that φs =

(
τs

τs∗

)2

+ α
2

45
f

(
ΠM
eq

τs∗

)2

+ 2q1f cosh

(
q2

√
3

20

ΠM
m

τs∗

)
− 1− (q1f)2

def≡ 0 (19)

where Π∼
M = Π∼

M ′+ΠM
m 1∼, with Π∼

M ′ and ΠM
m 1∼ the deviatoric and hydrostatic part of Π∼

M respectively,

and τs = Π∼
M : (m s ⊗ n s) with m s and n s the gliding direction and normal to slip plane for

system s respectively (with m s ⊥ n s). ΠM
eq is defined as the von Mises norm of Π∼

M , i.e. ΠM
eq =√

(3/2)Π∼
M ′ : Π∼

M ′ . With this definition, the effective stresses τs∗ are positive. The flow potentials are180

then chosen as

φ̃s = (1− f)

(
τs∗ −Rs −Rcum −

ρ]
ρ0

(µχγcum −∆χ)− τs0
)

(20)

where τs0 is the initial critical resolved shear stress of system s. The terms Rs and Rcum correspond

to conventional hardening contributions. Rs can for example be used to model dislocations based

hardening. Rcum can for instance be used to introduce an additional phenomenological hardening.

The term ρ]/ρ0(µχγcum−∆χ) corresponds to the strain gradient contribution. Note that, in general,185
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it cannot be excluded that, for large strain gradient effects, the effective flow stresses, defined by

τs0 +Rs+Rcum+ (ρ]/ρ0)(µχγcum−∆χ), become negative (Ling et al., 2018). In practice, the positive

part of the effective flow stress is used in the flow potentials. The evolution laws for void growth

follows

L∼
p
s

= − dΛ

dφ̃s
∂φ̃s

∂

(
−Π∼

M

ρ]

) = (1− f)γ̇sN∼
s
∗ (21)

ṙs = − dΛ

dφ̃s
∂φ̃s

∂
(
Rs

ρ]

) = −γ̇s ∂φ̃s

∂
(
Rs

ρ]

) (22)

with dΛ/dφ̃s = γ̇s and where the normal tensor N∼
s
∗ already derived in Ling et al. (2016) is introduced

as

N∼
s
∗ =

∂τs∗

∂

(
−Π∼

M

ρ]

) = −
(
∂φs

∂τs∗

)−1
∂φs

∂

(
Π∼

M

ρ]

) (23)

with

∂φs

∂τs∗
= −2

τs2

τs3∗
− 4

45
αf

ΠM2

eq

τs3∗
− 2

√
3

20
q1q2f

ΠM
m

τs2∗
sinh

(
q2

√
3

20

ΠM
m

τs∗

)
(24)

and

∂φs

∂

(
Π∼

M

ρ]

) = 2
τs

τs2∗
(m s ⊗ n s) +

2

15
αf

1

τs2∗
Π∼
M ′ +

2

3

√
3

20

q1q2f

τs∗
sinh

(
q2

√
3

20

ΠM
m

τs∗

)
1∼ (25)

3.2. Void coalescence190

A criterion to detect onset of coalescence by intervoid necking in single crystals was proposed by

Yerra et al. (2010). This criterion is based on the well known criterion by Thomason (1985) which

can be expressed with the function

φc = σI − Cfσg∗ (26)

where σI is the stress orthogonal to the coalescence plane defined by its normal vector e I , while

σg∗ represents the effective flow stress of the matrix during void growth which will be discussed in195

the following. Cf is a concentration factor. In general, the plane in which coalescence takes place

is not known a priori. Therefore it is usually necessary to test the criterion over a wide range of

directions in order to determine the plane in which coalescence will initiate at first. To alleviate this

difficulty, it is assumed that the normal to the coalescence plane coincides with the direction of the

largest eigenvalue of the symmetric Cauchy stress tensor σ∼ . The scalar σI is therefore interpreted200

as the maximum principal Cauchy stress and e I is the associated eigenvector. This assumption was

also proposed by Nguyen et al. (2020). The principal stress σI satisfies σI = σ∼ : (e I ⊗ e I), with

σ∼ = (1/det
(
E∼
)
)E∼
−T .Π∼

M .E∼
T . As for the void growth model presented above, the derivation of a

coalescence criterion as in Eq. (26) relies on the analysis of the behaviour of a porous unit-cell. In
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the following we consider an initially orthorhombic unit-cell containing a centered spherical void. Due205

to the applied deformation, the cell and void shapes evolve and that affects the coefficient Cf which

is a function of cell and void geometries. To characterize these geometries, the cell aspect ratio λc,

void aspect ratio W and normalized intervoid ligament size χ are often introduced. For a spheroidal

void of semi-axes a1 and a2 in a tetragonal unit-cell of dimensions L1 and L2 they are respectively

expressed as210

λc =
L1

L2
W =

a1
a2

χ =
2a2
L2

(27)

The porosity can be expressed in terms of these geometrical quantities

f =
4
3πa1a

2
2

L1L2
2

=
π

6

Wχ3

λc
(28)

Since Cf depends on these quantities, equations characterizing their evolution with loading are needed.

Deriving an accurate evolution equation for the void aspect ratio W in porous single crystals is out

of the scope of the present study. A first proposal based on variational limit analysis was provided

by Mbiakop et al. (2015). However, for the sake of simplicity, the void aspect ratio W will be fixed215

to 1, which corresponds to voids remaining spherical. For an arbitrary small porous unit-cell, the cell

aspect ratio λc can be expressed with respect to its initial value λ0c , initial porosity f0 and the cell

normalized elongation L1/L
0
1 which depends upon the deformation gradient tensor F∼ as follows

F∼
−1.L 1 = L 0

1 (29)

L1F∼
−1.e I = L0

1e I (30)

L1

L0
1

=
1√

(F∼
−1.e I).(F∼

−1.e I)
(31)

λc = λ0c

(
L1

L0
1

) 3
2

√
1− f
1− f0

(32)

To derive this expression it was assumed that the principal direction of the homogenization unit-cell

coincides with the direction of the maximum principal Cauchy stress oriented by the eigenvector e I .220

It appears from Eq. (28) that, assuming W = 1, applying equation (32) and having an evolution

equation for f allows to compute χ with

χ =

(
6

π
λcf

) 1
3

(33)

A particular form of Cf as a function of W and χ will be chosen in Section 4.2.2.

In Eq. (26) σg∗ represents the effective flow stress of the matrix during void growth. In (Yerra et al.,

2010) the authors account for hardening of the matrix by determining an effective flow stress in the225

vicinity of the void in the coalescence plane. They propose to perform an auxiliary computation on a

single Gauss point with an identical crystal orientation and under an equibiaxial straining loading state

which is representative of the loading during coalescence in the coalescence plane. The effective flow

stress is then derived as the equivalent stress when the actual equivalent plastic deformation is reached

10



in the auxiliary computation. Such a method is an elegant way to introduce hardening in Thomason’s230

coalescence criterion. Nevertheless, the computational cost of performing these auxiliary simulations

in order to determine the effective flow stress of the crystal matrix can become significant. In principle,

at each iteration of the constitutive integration such a simulation should be done. Therefore two new

approaches are proposed and described as follows. The main ingredient of these methods is to consider

that at initiation of intervoid necking many slip systems are activated in the intervoid ligament and235

that hence the flow stress can be determined from an isotropic criterion. The Thomason criterion is

reformulated as

σc∗ such that φc = σI − Cfσc∗
def≡ 0 (34)

φ̃c = (1− f)

(
σc∗ −Rcum −

ρ]
ρ0

(µχγcum −∆χ)− σg∗
)

(35)

Eq. (34) defines an equivalent coalescence stress σc∗, while Eq. (35) is the effective coalescence flow

potential. These equations are the coalescence counterpart of Eq. (19) and (20) defined previously for

void growth. Since many slip systems are active, the effective flow stress σg∗ of the crystal matrix can240

hence be approximated by the effective flow stress of an isotropic matrix. The latter can for instance

be defined implicitly by a GTN-like equation

σg∗ such that φg =

(
Σeq
σg∗

)2

+ 2qc1f cosh

(
qc2

3

2

Σm
σg∗

)
− 1− (qc1f)2

def≡ 0 (36)

where qc1 and qc2 are parameters to be calibrated. σg∗ represents the effective flow stress of the matrix

during void growth, thus it must be updated while coalescence is not taking place. However, once

coalescence sets on, σg∗ is kept constant or follows a hardening law that will be discussed in Section245

4.3. Once more, it cannot be excluded that, for large strain gradient effects, the effective flow stress,

defined by σg∗ +Rcum + (ρ]/ρ0)(µχγcum−∆χ), becomes negative. In practice, the positive part of the

effective flow stress is therefore used in the flow potential.

3.2.1. Void coalescence deformation mechanism

In the spirit of previous section, void coalescence can be interpreted as an independent deformation250

mechanism having its own yield surface and flow rule. Therefore, the coalescence criterion Eq. (35)

can be regarded as a flow potential and it follows the evolution laws for void coalescence

L∼
p
c

= − dΛ

dφ̃c
∂φ̃c

∂

(
−Π∼

M

ρ]

) = (1− f)γ̇cN∼
c
∗ (37)

with dΛ/dφ̃c = γ̇c and where the normal N∼
c
∗ is introduced such that

N∼
c
∗ =

∂σc∗

∂

(
−Π∼

M

ρ]

) = −
(
∂φc

∂σc∗

)−1
∂φc

∂

(
Π∼

M

ρ]

) (38)

with

∂φc

∂σc∗
= −Cf (39)
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and

∂φc

∂

(
Π∼

M

ρ]

) =
∂φc

∂
(σ∼
ρ]

) :
∂
(σ∼
ρ]

)

∂

(
Π∼

M

ρ]

) =
∂σI
∂σ∼

:

(
1

det
(
E∼
)E∼−T⊗E∼

)
(40)

= (e I ⊗ e I) :

(
1

det
(
E∼
)E∼−T⊗E∼

)
(41)

according to the derivation rules given in (Bertram, 2012).255

The overall macroscopic plastic dissipation finally becomes

Π∼
M :

(
Ṗ∼ .P∼

−1
)

= (1− f)

N∑

s=1

γ̇sΠ∼
M : N∼

s
∗ + (1− f)γ̇cΠ∼

M : N∼
c
∗

= (1− f)

N∑

s=1

γ̇sτs∗ + (1− f)γ̇cσc∗ (42)

This equation states the equivalence between macroscopically and microscopically dissipated energies.

Combining Eq. (15) and (42), the mechanical dissipation can eventually be formulated as a sum over

all deformation mechanisms

d =
1− f
ρ]

N∑

s=1

(
τs∗ −

ρ]
ρ0

(µχγcum −∆χ)−Rs −Rcum
)
|γ̇s|

+
1− f
ρ]

(
σc∗ −

ρ]
ρ0

(µχγcum −∆χ)−Rcum
)
|γ̇c| (43)

=
1

ρ]

N∑

s=1

(
φ̃s + (1− f)τ0

)
|γ̇s|+ 1

ρ]

(
φ̃c + (1− f)σg∗

)
|γ̇c| ≥ 0 (44)

According to Eq. (44), positivity of the flow potentials φ̃k associated to non-zero flow rates γ̇k (with

k ∈ {s, c}) is a sufficient condition to ensure positivity of the dissipation. The viscoplastic flow

rules chosen in the following (see Eq. (50) for instance) satisfy this condition and thus guaranty the

positivity of d.

3.2.2. f∗-type void coalescence260

Void coalescence was described in previous sections as an individual plastic mechanism having

its own yield surface. This approach is relatively straightforward from a modelling point of view.

However, from a numerical perspective the implementation effort and computational costs associated

to this approach can be significant. Another common approach in the literature consists in modelling

void coalescence without extending the set of yield criteria. The method proposed by Tvergaard and

Needleman (1984) introduces an effective definition of the porosity f∗ once a critical porosity fc is

reached

f∗ =





f for f ≤ fc
fc +

f∗u−fc
fR−fc (f − fc) for f > fc

(45)

where fc, fR and f∗u are material parameters. fc describes the porosity at the onset of void coalescence.

fR denotes the standard porosity at fracture, while f∗u is the effective porosity at fracture. With
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adequate numerical values of material parameters, Eq. (45) allows to artificially increase the effective

porosity f∗ once coalescence sets on. As a consequence, the yield surfaces associated to void growth

shrink at a greater rate leading to an accelerated stress drop. The advantage of utilizing Eq. (45) is265

that void coalescence can straightforwardly be incorporated in a numerical implementation of a void

growth model. On the other hand, some drawbacks are the lack of physical foundation for the effective

porosity and the necessity to know a priori the critical porosity at coalescence fc. Furthermore, in

such a formulation this parameter is assumed no to depend on the loading state.

In order to alleviate these two last drawbacks an hybrid formulation was proposed by Zhang et al.270

(2000). They proposed to revoke the ad hoc choice of fc and define it as the porosity reached when

Thomason’s coalescence onset criterion is met. In that manner, fc is continuously updated upon

loading and becomes constant when void coalescence is reached. f∗–type void coalescence will rely on

the coalescence criterion defined at Eq. (34) in order to obtain fc locally.

In the context of the strain gradient porous plasticity model presented in Section 2, assuming275

an effective porosity as in Eq. (45) does not involve major difficulties. The main point consists in

replacing f by f∗ in every equation, but one. The only equation in which f is not replaced by f∗ is the

evolution law of the porosity Eq. (48). However, it should be noted that since void coalescence is not

treated as an independent plastic mechanism with its own yield surface, γc is not defined anymore.

As a consequence the accumulated plastic slip γcum defined at Eq (2) and the auxiliary variable γχ280

do not account for void coalescence explicitly. However, since void growth criteria are affected by f∗,

void coalescence still has an indirect effect on γcum and γχ.

It is well established in the literature that f∗u can be adjusted in order to obtain an adequate

acceleration of the porosity when a f∗–type coalescence model is used (Zhang et al., 2000). In Figure

2, the numerical value chosen for f∗u , namely 67%, leads to a relatively weak acceleration of porosity

increase. Increasing f∗u would result in a sharper acceleration of porosity and thus in a faster drop of

the stress. When coalescence is treated as an additional yielding mechanism it is less straightforward

to control the slopes of porosity increase and decrease of stress in the coalescence regime. In particular,

void coalescence can be sensitive to the void shape, which was considered to be fixed as a sphere in

the present work. Deriving evolution equations for the void shape for strain hardening materials is

a difficult task. Here, a phenomenological approach is considered in order to control the decrease of

the stress during void coalescence. In the model presented in Section 3.2, the flow stress for void

coalescence noted σg∗ was considered constant once coalescence has set on. Approaches to account for

hardening were proposed by Scheyvaerts et al. (2011); Vishwakarma and Keralavarma (2019). Here a

formulation is proposed in order to be able to control the acceleration of porosity and stress decrease

in the spirit of the work of Brepols et al. (2017). The coalescence flow stress now writes

σg∗ ← σg∗ + ω

(
1− exp

(
−γ

c

β

))
(46)

where ω and β are additional material parameters that can be adjusted to control the rate of void

coalescence. Their role will be further discussed on the basis of material point simulations in Section
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4.3.285

3.3. Evolution equations

The evolution of the elastic part of the deformation gradient E∼ is deduced from the total and

plastic deformation rates and is written as

Ė∼ = Ḟ∼ .F∼
−1.E∼ −E∼ .


 ∑

k∈{s;c}

γ̇kN∼
k
∗


 (47)

The evolution law for porosity used in the context of ductile fracture of porous materials usually writes

ḟ = (1− f)tr
(
Ṗ∼ .P∼

−1
)

(48)

Note that this equation holds during void growth as well as during void coalescence. Eq. (48) can be

time-integrated and leads to the following explicit expression of the porosity

f = 1− 1− f0
det
(
P∼
) (49)

where f0 denotes the initial void volume fraction.

In addition, a viscoplastic flow rule is adopted for each deformation mechanism (void growth

mechanisms and void coalescence mechanism). In that way evolution of the plastic slip variables γ̇s

and γ̇c are indistinguishably governed by the following Norton type flow rule290

γ̇k = γ̇0

〈
φ̃k

τk0 (1− f)

〉n
k ∈ {s; c} (50)

where γ̇0 and n are materials parameters controlling the rate sensitivity of the material behaviour. The

Macaulay brackets are defined such that 〈•〉 = max(•, 0). Distinct values of these viscosity parameters

can be selected for growth and coalescence, if necessary. Note that the term (1−f) at the denominator

accounts for the fact that the slip rates γ̇k are power conjugate to the effective matrix stresses τs∗ and

σc∗ as depicted in Eq. (42).295

3.4. Summary of constitutive equations and material parameters

Equilibrium equations, state laws and evolution equations are summarized in Table 1. Four cate-

gories of material parameters can be identified:

1. Material parameters for elasto-viscoplasticity

2. Initial void characteristics300

3. Porous criteria GTN-like parameters

4. Strain gradient plasticity parameters

They are listed in Table 2 with their corresponding unit and signification.
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Table 1: Summary of equilibrium equations, state laws and evolution equations.

equilibrium equations state laws evolution equations

DivS∼ = 0 ∀X ∈ D0 Π∼
e = C

≈
: E∼

e
GL

Ė∼ = Ḟ∼ .F∼
−1.E∼ −E∼ .


 ∑

k∈{s;c}

γ̇kN∼
k
∗




DivM − S = 0 ∀X ∈ D0 M = AK χ γ̇k = γ̇0

〈
φ̃k

τ0(1−f)

〉n
with k ∈ {s; c}

and s = J1, NK

T = S∼ .n 0 ∀X ∈ ∂D0 S = ∆χ − µχγcum ṙs = gs(rs)|γ̇s| with s = J1, NK

M = M .n 0 ∀X ∈ ∂D0 γ̇cum =
∑

k∈{s;c}

|γ̇k|

ḟ = (1− f)tr
(
Ṗ∼ .P∼

−1
)

4. Model implementation, calibration and assessment

4.1. Material behaviour305

In this study a face-centered cubic (FCC) crystal composed of N = 12 octahedral slip systems

of the {111} < 110 > family is considered. The hardening behaviour used is a standard dislocation

density based law following (Kubin et al., 2008). The critical resolved shear stress of a given system

s is composed of a thermal component due to lattice friction τ0 and an athermal component Rs due

to dislocations interactions310

τsc = τ0 +Rs = τ0 + µ

√√√√
N∑

u=1

asuru (51)

where µ is the shear modulus and asu a matrix describing interactions between dislocations. ru

denotes the adimensional dislocation density (ru/b2 = ρu is the usual dislocation density, i.e. the

length of dislocation lines per unit volume, b being the norm of the dislocation Burgers vector b ).

The evolution of dislocation densities is given by the following rate equations

ṙs = |γ̇s|


 1

κ

√√√√
N∑

u=1

bsuru −Gcrs

 (52)

Numerical values of material parameters corresponding to a 316L stainless steel and used throughout315

this work are listed in Table 3.

4.2. Validation of the coalescence criterion

4.2.1. Single crystal porous unit-cell simulations

In order to validate the capability of the criterion given by Eq. (34) to detect onset of coalescence

the following procedure is proposed. Porous unit-cell finite element simulations are performed for320
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Table 2: Summary of material parameters involved in the strain gradient porous crystal plasticity

model.

Category Parameter Unit Signification

1

Cijkl MPa Elastic moduli

τ0 MPa Initial critical resolved shear stress

γ̇0 s−1 Reference slip rate

n - Viscosity exponent

ψh / Rs, Rcum MPa Hardening potential / Hardening functions

gs - Hardening variables evolution functions

2
f0 - Initial porosity

λ0c / χ0 - Initial cell aspect ratio / intervoid distance

3
q1, q2, α - Void growth GTN-like parameters

qc1, qc2, fR, f∗u , qχ - Void coalescence GTN-like parameters

4
A MPa.mm2 Strain gradient modulus

µχ MPa Penalization modulus

several crystal orientations, stress triaxiality ratios and hardening behaviour. Onset of void coalescence

can then be identified in each unit-cell simulation. Finally, the value of σI at onset of coalescence

(σnumI ) is compared to the theoretical value (σthI ) predicted by the proposed criterion Eq. (26). The

boundary conditions applied to the single crystal porous unit-cells are described in Appendix A.

Cubic unit-cells composed of a FCC single crystal matrix material and a centered spherical void325

are considered. The initial porosity is equal to 1%. Two sets O1 and O2 of crystal orientations (given

with respect to the unit-cell lattice periodicity directions X 1 - X 2 - X 3) are considered

O1 =





[100]− [010]− [001]

[1̄25]− [12̄1]− [210]

[111]− [2̄11]− [01̄1]

[110]− [1̄10]− [001]





O2 =





[210]− [1̄20]− [001]

[1̄25]− [05̄2]− [29 2 5]

[100]− [011̄]− [011]

[100]− [021̄]− [012]





(53)

For the first set O1 unit-cell simulations were performed in (Ling et al., 2016) with the material

parameters corresponding to a 316L stainless steel listed in Table 3. To broaden the range of considered
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Table 3: Numerical values of material parameters corresponding to a 316L stainless steel.

C11 C12 C44 τ0 n γ̇0

200 GPa 136 GPa 105 GPa 88 MPa 15 1014 s−1

µ Gc κ rs0 bsu (s 6= u) buu

65.6 GPa 10.4 42.8 5.38× 10−11 1 0

a1 a2 a3 a4 a5 a6

0.124 0.124 0.07 0.625 0.137 0.122

f0 λ0c q1 q2 α qc1

1% 1 1.471 1.325 6.456 1

qc2 fR f∗u
def≡ 1/q1 µχ A `c

def≡
√
A/τ0

1.5 0.35 0.67 500 MPa 1 N 106.6 µm
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orientations, in this study additional unit-cell simulations are performed for all orientations in O1 and330

O2 with the same materials parameters but asu = 0, i.e. in the absence of hardening.

4.2.2. Coalescence onset

Onset of coalescence by intervoid necking is characterized by the transition to a uniaxial straining

mode (pure extension) during which plastic deformation localizes in the intervoid ligament. This

transition is marked by the saturation of transverse (in the coalescence plane) deformation. In other335

words, if the coalescence plane is normal to X 1, the components F 22 and F 33 of the deformation

gradient will saturate. Therefore, for an increment ∆F∼ of the macroscopic deformation gradient,

onset of void coalescence can be detected when the ratios ∆F 22/∆F 11 and ∆F 33/∆F 11 become

lower than an arbitrary low value. Onset of coalescence will be considered when these two ratios

are simultaneously lower than 5%. During the post-processing of a unit-cell simulation, the lowest340

deformation F
c

11 at which this condition is met, is considered as the onset of coalescence and the

maximum principal Cauchy stress at coalescence is recorded as σnumI = σ11(F
c

11). At the same time

the value of Cfσ
c
∗ is computed. For that purpose, the form of Cf derived for isotropic materials in

Thomason (1985); Benzerga et al. (1999); Pardoen and Hutchinson (2000) is adopted

Cf (χ,W ) = (1− χ2)

(
0.1

(
1− χ
χW

)2

+ 1.2

√
1

χ

)
(54)

where χ and W respectively represent effective normalized intervoid distance and void aspect ratio.

The limit load formula in Eq. (54) has been thoroughly revisited in the recent literature (Benzerga

and Leblond, 2014; Morin et al., 2015). In particular, a remedy to the singularity in the limit of a

penny-shape crack (W → 0) was proposed (Hure et al., 2016; Torki et al., 2017). In addition, the

validity of Eq. (54) for porous single crystals is not straightforward, because it was derived in the

context of isotropic plasticity. A derivation of the limit load of a porous unit-cell was extended recently

to the crystal plasticity framework (Hure, 2019). Yet, for the sake of simplicity, it remains interesting

to evaluate the validity of the limit load in Eq. (54) in presence of plastic anisotropy. Extensions to

possibly more accurate and more complex coalescence criteria is left for further studies. Thomason’s

original criterion was derived on an orthorhombic unit-cell containing an orthorhombic void. However

the orthorhombic unit-cell considered here contains a spherical void. As discussed by Scherer and

Hure (2019) a parameter qχ can be introduced in order to account for this difference. In that way, Cf

is still expressed as in Eq. (54), but the intervoid ligament ratio χ defined in Eq. (33) is replaced by

χ← qχχ (55)

A straightforward geometrical analysis shows that the transition from an orthorhombic void to a345

spherical void yields to qχ =
√
π/6. Yet, qχ could also be considered as an additional coefficient to

be identified in the same vein as q1, q2 and α for the void growth model. For the sake of simplicity,

the analytical value of
√
π/6 is used in the present study. To estimate χ and W it is assumed for

simplicity that the initially cubic cell remains orthorhombic and that the initially spherical voids
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remain ellipsoidal when deforming. Although these assumptions might be crude for highly deformed350

cells at coalescence, especially at low triaxialities, it is the simplest way to obtain estimates of χ

and W . With these assumptions a deformed unit-cell is characterized by L1, L2 and L3 which are

respectively computed by following the displacements of the nodes initially located at the middle

of each face of the unit-cell. The void is characterized by three semi-axes r1, r2 and r3 which are

respectively computed by following the displacements of the nodes initially located at the intersection355

of the void with the three major axis of the cube (void poles). The geometrical parameters χ and W

are then computed as follows

χ =
√
χ2χ3 =

√
2r2
L2

2r3
L3

W = 2
W12W13

W12 +W13
= 2

r1
r2
r1
r3

r1
r2

+ r1
r3

λc =
L1√
L2L3

(56)

which boil down to their usual definition when the void is a sphere and the cell a cube (χ = 2R/L

and W = 1). Yet, the choice made in Eq. (56) to define χ, W and λc is not unique. Neglecting

viscous effects, the value of σc∗ should be equal to σg∗ at onset of coalescence, hence σg∗ is computed by360

solving Eq. (36) where qc1 = 1.5 and qc2 = 1 are chosen. The theoretical coalescence stress is therefore

σthI = Cf (χ,W )σg∗ .

In Figure 1, the numerical coalescence stresses are plotted against the theoretical coalescence

stresses for all the simulations for which coalescence was attained. If the criterion were to be exact the

points would be located on the ’y = x’ bisector. As it is only an approximation the points may not365

exactly lay on this line. Almost all the predicted coalescence stress values are less than ±%20 apart

from the values predicted by the unit-cell simulation. It can be seen that the criterion is capable of

well predicting the coalescence onset with or without hardening of the matrix material surrounding

the void. A more refined tuning of the function Cf in Eq. (56) and the parameters in Eq. (36)

could lead to a more precise prediction of coalescence onsets. This is however beyond the scope of the370

present study.

4.3. f∗–type coalescence vs void coalescence mechanism

Several variations of the model presented above are compared in this section. Ductile fracture by

void growth only is compared to ductile fracture by void growth and void coalescence, with either

the f∗–type treatment of coalescence or its yield mechanism based treatment. A single hexahedral375

element with eight nodes and reduced integration with one Gauss point is loaded with a constant stress

triaxiality similarly to the periodic porous unit-cells in Section 4. Triaxialities of 1 and 3 are applied.

Three different crystal orientations are considered and correspond to the three first orientations in set

O1. An initial porosity of 1% is considered and numerical values of other material parameters used are

listed in Table 3. Since a single Gauss point is used, no gradients of accumulated plastic slip can form380

and therefore the non-local moduli A and µχ do not influence the results presented hereafter. Stress

vs strain responses and porosity evolution are plotted in Figure 2. Solid lines correspond to cases at

a triaxiality T = 1 and dashed lines to cases at T = 3. Reference behaviours of the pristine void-

free single crystal are plotted in black. The prediction of the model with void growth mechanisms
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Figure 1: Numerically computed principal Cauchy stress in unit-cell simulations vs theoretical pre-

diction of the principal Cauchy stress at onset of coalescence. Dashed lines represent the ±20% error

from the case were the theoretical prediction matches the numerical value.

only, i.e. without accounting for void coalescence, is plotted in the same graphs. The respective385

curves of f∗–type coalescence and void coalescence mechanism depart from one another only once

coalescence sets on. In addition, since the same coalescence criterion is used for f∗–type coalescence

and void coalescence mechanism, simulations accounting for coalescence start deviating from the void

growth model at the same moment. When only void growth mechanisms are accounted for, stress and

porosity evolution with respect to strain remain smooth all the way until fracture. However, when390

coalescence is taken into account, a corner appears at onset of void coalescence. That corner marks

an acceleration of porosity increase which simultaneously triggers a sharp stress drop. In all cases

presented in Figure 2 but one, the acceleration of porosity increase is more pronounced with the void

coalescence mechanism than with the f∗–type treatment of coalescence. As a consequence, stresses

also drops faster.395

The respective influence of parameters ω and β in the coalescence induced hardening Eq. (46)

is brought to light in Figure 3 in which both parameters were independently varied. ω is taken in

the range 1.5 to 100 GPa, while β is in the range 0.1 to 10. In the present example the coalescence

flow stress σg∗ was equal to 615 MPa. Increasing ω results in a slower porosity growth and stress

softening. On the contrary increasing β has opposite effects, namely a faster porosity augmentation400

and a sharper stress drop. Figure 4 shows how ω affects the void growth and coalescence inelastic

variables after coalescence. As ω increases, void growth plastic variables increase more and more in the

coalescence regime (∃s γ̇s > 0), whereas for ω = 0 void growth mechanisms are completely inactive in
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Figure 2: Stress-strain behaviour and porosity evolution at imposed stress triaxialities of 1 (solid lines)

and 3 (dashed lines) on a single Gauss point with three different versions of the porous single crystal

ductile failure model: void growth mechanisms only (red), void growth mechanisms and f∗–type

coalescence (blue), and void growth and void coalescence mechanisms (orange).
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Figure 3: Influence of material parameters ω and β from Eq. (46) on the post-coalescence regime

of the tensile stress and the porosity. ω varies from 1.5 to 100 GPa and β varies from 0.1 to 10.

σg∗ = 615 MPa in this example.
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Figure 4: Influence of material parameter ω on the post-coalescence regime of void growth and void

coalescence plastic slip variables. ω varies from 1.5 to 100 GPa and β is fixed to 1. σg∗ = 615 MPa in

this example.

the coalescence regime (∀s γ̇s = 0). In contrast, as ω increases, the contribution of void coalescence

γc to the inelastic activity decreases in the post-coalescence regime. The role of Eq. (46) is thus to405

introduce strain hardening associated to the void coalescence mechanism. In that way, the softening

rate can be calibrated from experiments or computational unit-cell results.

4.4. Numerical aspects

The model presented in previous sections was discretized using an Euler-backward (implicit)

scheme and implemented in the finite element software Z-set (Besson and Foerch, 1998). Details on410

the finite element implementation of the Lagrange multiplier formulation were described in (Scherer

et al., 2020). In the subsequent finite element simulations, 20-node brick finite elements are used.

Quadratic shape functions for displacement degrees of freedom (DOF) and linear shape functions for

the Lagrange multiplier λ and micro-slip γχ DOF are used. Reduced integration is performed by using

eight Gauss points per element.415

Highly damaged elements are suppressed from the finite element mesh during the computation.

An element is considered as being ”broken” when at least half of the Gauss points (4 out of 8) satisfy

at least one of the following criteria

χ > (1− ε) or f > (1− ε)fR or EGL,I > EcGL,I (57)

where ε is a small tolerance parameter set to 10−2 and EGL,I is the largest eigenvalue of the Green-

Lagrange strain tensor E∼GL = (1/2)(F∼
T .F∼ − 1∼). The critical value EcGL,I is set to 4. At the Gauss420

point level, if one of these criteria is met, the stress tensor is fixed to 0 and the tangent matrix is set to

10−6C
≈

, with C
≈

the elasticity stiffness tensor. The last criterion on EGL,I is an ad hoc criterion used

in order to remove elements that are highly sheared or elongated. Elements of this kind are typically

observed in regions of low stress triaxiality for which damage due to void growth remains very low.

23



(a) (b)

Figure 5: (a) Sketch of the plate geometry and applied plane strain boundary conditions. (b) Finite

element meshes used in the mesh convergence analysis. From top to bottom, meshes are respectively

composed of 80, 320, 1280, 5120 and 13184 elements.

A possible way to get rid of this ad hoc criterion would consist in considering an effective porosity425

evolution law that accounts for shear induced damage (Nahshon and Hutchinson, 2008). Alternatively

shear induced void coalescence could also be considered (Torki and Benzerga, 2018). This is however

out of the scope of the present study and is left for a future work.

4.5. Mesh convergence analysis

A mesh convergence analysis is carried out in order to validate the regularization capacity of the430

model. A thin rectangular plate of initial length L0, width W0 = L0/5 and thickness T0 = W0/10, as

depicted in Figure 5, is loaded in plane strain tension by applying the following boundary conditions

U1(X1 = 0, X2, X3) = 0 U1(X1 = L0, X2, X3) = U1(t) (58)

U2(X1 = 0, X2, X3) = 0 U2(X1 = L0, X2, X3) = 0 (59)

U3(X1, X2, X3) = 0 (60)

The plate is discretized with m ∈ {80, 320, 1280, 5120, 13184} finite elements. The most dense mesh

thus totals 280683 displacement DOF and 53756 Lagrange multiplier and micro-slip DOF. The mesh

convergence analysis is performed on a single crystal with the crystal directions [100], [010] and [001]435

initially oriented along the orthonormal basis vectors X 1, X 2 and X 3 respectively. For the sake

of simplicity of this benchmark example hardening is discarded. The critical resolved shear stress is

therefore constant and equal to τ0 for all slip systems. Void coalescence is accounted for by using the

effective porosity f∗ defined at Eq. (45) once the coalescence onset criterion is met as discussed in

Section 3.2.2. Numerical values of material parameters are listed in Table 3.440

In Figure 6 the normalized engineering stress F/(S0τ0) is plotted against the normalized width

extension −∆W/W0. The predictions of the model without regularization in Figure 6a are compared

to the predictions with strain gradient regularization in Figure 6b. At small strains all meshes produce
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(b) Strain gradient (A = 0.1 N)

Figure 6: Stress vs normalized width reduction for conventional (a) and strain gradient (b) porous

single crystal plasticity for the several mesh densities. Vertical dashed lines represent the strain level

at which contours of damage variable χ are plotted in Figure 7.

identical results regardless of regularization. In this regime gradients of plastic strain are absent hence

no size effects due to gradients arise. At large strains the coarse meshes display spurious oscillations445

of stress and strain due to insufficient mesh refinement in the region of interest. Nevertheless, no

convergence is attained when mesh size is decreased in the post-localization regime in the absence

of gradient contributions. On the contrary, when regularization is active, the localization of plastic

strain is balanced by gradient-induced hardening. Convergence of numerical stress-strain curves with

respect to mesh density is thus achieved with the strain gradient plasticity model as expected.450

Figure 7 displays the fields of the normalized intervoid distance χ which is the relevant damage

variable during coalescence. χ strongly localizes in the necked region for both conventional and strain

gradient porous crystal plasticity. It can be noted that with a conventional plasticity theory, i.e. not

accounting for strain gradient hardening, the most dense mesh displays the most localized damage

field. When mesh size is decreased a smaller volume needs thus to be completely damaged to reach455

failure. This explains why less energy is required for failure when mesh size is decreased and the

absence of convergence with mesh size reduction. In contrast, with the strain gradient regularization,

the damage variable spans over a similar volume for the five different meshes. Therefore macroscopic

stress-strain curves are nearly mesh-size independent. Even though the macroscopic stress vs strain

curves and the damage fields are almost mesh-size independent with the strain gradient plasticity460

model, the local field of the damage variable χ still localizes ultimately to the thickness of one Gauss

point. Eventually a one-element-thick discrete crack is nucleated in the middle of the specimen and

propagates towards both edges of the specimen.
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Figure 7: Field of damage variable χ at −∆W/W0 = 0.4 for conventional (left) and at at −∆W/W0 =

0.75 for strain gradient (right) porous single crystal plasticity for the several mesh densities.
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5. Fracture toughness of porous crystals

5.1. Specimen geometry, mesh and boundary conditions465

A CT specimen geometry is meshed with a single element across the thickness (along X 3). The

notch front of the CT specimen is located at X1 = a0. The notch is infinitely sharp, so that the notch

radius is equal to zero. A vertical displacement UG2 (t) is applied to the nodes denoted by the letter

G in Figure 8 (three nodes aligned along direction X 3 through the thickness of the specimen). Plane

strain conditions are imposed by enforcing U3 = 0 to all nodes of the finite element mesh. Numerical470

values of material parameters used for the simulation of the CT specimen are listed in Table 3. The

crack mouth opening displacement (CMOD) is defined as the vertical opening of the crack as shown

in Figure 8. In contrast to the plane strain tension simulations of previous section, hardening is now

taken into account. The initial porosity f0 is taken as 1% in most cases and as 0.1% in a few cases that

will be indicated. Similarly the strain gradient modulus A is taken equal to 1 N for most simulations475

apart from a few cases, specified later on, where it takes values equal to 0.1 and 10 N. These values

of A can be related to an intrinsic material length scale by introducing the quantity `c
def≡
√
A/τ0.

The values of 0.1, 1 and 10 N for the parameter A correspond to internal lengths `c equal to 31.6 µm,

106.6 µm and 316.2 µm respectively. These lengths are to be compared to the specimen characteristic

size which is of the order of W = 40 mm. The size of elements within the refined region of the480

mesh is equal to `0 = 66.7 µm. The mesh size is therefore sufficient to resolve strain localization

phenomena and obtain mesh size independent results with the strain gradient plasticity model. In the

following, the conventional and strain gradient plasticity versions of the porous single crystal model

are compared.

5.2. Single crystal specimens485

Figures 9 and 10 show the accumulated plastic slip fields in the vicinity of the notch front of the

CT specimen for several crystal orientations. Results obtained with the conventional model are shown

in Figure 9 while those obtained with the strain gradient plasticity model are presented in Figure 10.

The crystal orientations inverse pole figures are shown in Figure 9g. In all these simulations, some

extent of crack propagation was reached. With the conventional model, striking variations of crack490

paths are observed between different orientations. For two highly symmetric orientations 9c and 9d

the crack propagates straight in the middle symmetry plane of the specimen. The highly symmetric

orientation 9a, the low symmetry orientation 9e and the non-symmetric orientation 9b display crack

paths that deviate from the middle plane. In the case of orientation 9e the crack starts to propagate

out of the middle plane and later bifurcates back to an horizontal plane of propagation. Orientations495

9f displays the most serrated crack path. For this orientation the crack oscillates around the middle

symmetry plane of the specimen.

As shown in Figure 10, crack paths obtained with the strain gradient plasticity model remain closer

to the middle plane than those obtained with the conventional model. Furthermore it is particularly

clear from Figures 9a, 9b and 10a, 10b, that the strain gradient plasticity model predicts much500
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H

a0
CMOD

W

Figure 8: Finite element mesh of a CT specimen geometry of width W = 40 mm with initial crack

length a0 = 24.4 mm and applied load F . The mesh is composed of 5440 20-node brick elements

containing 8 Gauss points each. In the refined region of the mesh, elements are cubes of size `0 =

66.7 µm.

smoother plastic strain fields than the conventional model. This less localized plastic activity could

explain why crack paths predicted by the strain gradient plasticity model are less influenced by the

crystal orientation. The strain gradient regularization indeed prevents intense strain localization

from occurring along directions that are preferential for plastic slip. As a consequence, the role of

the applied mechanical loading on the crack path evolution is emphasized at the detriment of less505

influence from crystal orientation. Figure 11 displays the curves of applied load F at point

G against the CMOD. The predictions of the conventional model are shown in Figure 11a and those

of the strain gradient plasticity model in Figure 11b. It is recalled that loading curves obtained with

the conventional porous model are mesh size dependent so that presented results are for a given mesh

size. Yet, results with the conventional model already highlight the difference in terms of ductility that510

exist between different crystal orientations. Taking strain gradients into account postpones the crack

propagation and the associated load decrease. As pictured in Figure 10, damage is indeed smeared

over several Gauss point layers, thus requiring a larger amount of energy to be supplied in order to

drive the crack forward. Although still significant, the difference of the loading curves and ductility is

smaller with the strain gradient plasticity model than with the conventional model. This observation515

echos the fact that the strain gradient plasticity model predicts less serrated and more similar crack

paths between crystal orientations than the conventional model does.

The CT single crystal simulations were post-processed in order to determine the crack extension

28



γcum

0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

(a) Conventional [100]-[010]-[001] (�IPF) (b) Conventional [1̄25]-[05̄2]-[2925] (NIPF)

(c) Conventional [011]-[100]-[011̄] (�IPF) (d) Conventional [100]-[011]-[01̄1] (•IPF)

(e) Conventional [1̄10]-[111]-[112̄] (JIPF) (f) Conventional [1̄10]-[112]-[111̄] (IIPF)

(g) inverse pole figure for the single crystal specimens

Figure 9: Accumulated plastic slip fields in the vicinity of single crystal CT specimen notch front for

several initial crystal orientations obtained with the conventional porous crystal plasticity model. The

last computed time steps are shown.
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γcum

0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

(a) Strain gradient [100]-[010]-[001] (�IPF) (b) Strain gradient [1̄25]-[05̄2]-[2925] (NIPF)

(c) Strain gradient [011]-[100]-[011̄] (�IPF) (d) Strain gradient [100]-[011]-[01̄1] (•IPF)

(e) Strain gradient [1̄10]-[111]-[112̄] (JIPF) (f) Strain gradient [1̄10]-[112]-[111̄] (IIPF)

Figure 10: Accumulated plastic slip fields in the vicinity of single crystal CT specimen notch front for

several initial crystal orientations obtained with the strain gradient porous crystal plasticity model

(A = 1 N). The last computed time steps are shown.
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(b) Strain gradient (A = 1 N)

Figure 11: Load vs CMOD for conventional (a) and strain gradient (b) porous single crystal CT

specimens.

∆a = a(t)− a0, where a(t) is the crack length along X 1 at time t. The plastic component Jpl of the

fracture toughness J was computed according to the ASTM Standard E1820 (2017) which gives the520

following expression

Jpl =
ηplApl
BNb0

(61)

where Apl is the plastic part of the area located below the load vs CMOD curves, BN = 66.7 µm

is the net specimen thickness, b0 = W − a0 = 15.6 mm is the uncracked ligament length and ηpl =

2 + 0.522b0/W = 2.20358. Note that the crack growth correction proposed in ASTM Standard E1820

(2017) was not applied when computing Jpl. Figure 12 shows the evolution of Jpl with the crack525

extension ∆a for the different single crystal specimens. The predictions of the conventional model are

shown in Figure 12a and those of the strain gradient plasticity model in Figure 12b. An important

difference between crystal orientations is also observed. The less ductile orientations display a nearly

flat evolution of Jpl with the crack extension. On the contrary, orientations which display appreciable

ductility show a fast increase of Jpl with ∆a. For all orientations, the strain gradient plasticity model530

predicts a larger value of Jpl at initiation of crack propagation (∆a > 0) than the conventional model.

In addition, the increase of Jpl with ∆a is steeper with the strain gradient plasticity model.

In order to quantify simultaneously the effect of the void volume fraction and the internal length,

[100]-[010]-[001] single crystal CT specimens with initial porosity f0 = 0.1% and 1% and with strain

gradient modulus A = 0.1 N, 1 N and 10 N were simulated. The fields of damage variable χ defined535

at Eq. (33) for the specimen with the initial porosity of 1% are shown in Figure 13. It can be noticed

that even a very small internal length (e.g. A = 0.1 N corresponding to `c =31.6 µm) can significantly

affect the crack path. The mesh size is indeed small enough to capture strain gradient effects at

this scale. For the conventional model’s prediction in Figure 13a and the strain gradient prediction

with A = 0.1 N in Figure 13b, the crack paths are not straight. Nevertheless the conventional model540

displays a crack initially bifurcating towards the bottom of the specimen, while the strain gradient
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(b) Strain gradient (A = 1 N)

Figure 12: Jpl plastic component of J vs crack extension ∆a for conventional (a) and strain gradient

(b) porous single crystal CT specimens.

plasticity model leads to a crack propagating towards the top of the specimen. As the internal length

increases the crack path becomes straight (see Figures 13c and 13d). Simulations with the lower

initial porosity of 0.1% (not shown here for conciseness) display a straight crack path whatever the

internal length, even for the conventional model. A possible reason for this observation is that a545

large initial porosity allows to reach sooner the critical stress for the onset of coalescence. Regions

located out of the horizontal symmetry plane can hence undergo coalescence more easily and lead to

crack bifurcation. However, it cannot be excluded that the bifurcation observed with the conventional

model and the strain gradient plasticity model at very small internal length is not an artifact due to

the dependency to the finite element discretization.550

For the small internal length, the damage variable does not spread much around the crack lips

and front. In contrast, the larger internal length leads to damage fields smeared over multiple rows

above and below the crack lips, but also smeared over multiple columns of elements ahead of the

notch front. It is important to recall that the smoothing of the damage variable profile observed

here is an indirect result of the strain gradient regularization of the accumulated plastic slip variable555

γcum. The damage variable is not explicitly regularized in this model. In the context of brittle

fracture the damage variable is often used as the variable bearing gradient effects (Aslan et al., 2011;

Lindroos et al., 2019). Recently Lindroos et al. (2020) compared brittle fracture models based on the

regularization of accumulated slip, or accumulated damage or an additive combination of both. In

the context of ductile fracture, a damage variable was used for regularization for instance in (Reusch560

et al., 2003; Ramaswamy and Aravas, 1998; H̊akansson et al., 2006), which was either the porosity

or the effective porosity. However, as already discussed by Nguyen et al. (2020), at the final stage

prior to failure, non-local models based on a damage indicator must satisfy that local and non-local

variables eventually coincide. Decreasing internal lengths were considered in (Poh and Sun, 2017) to

overcome this shortcoming.565
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0.20 0.25 0.30 0.35 0.40 0.45 0.50

(a) Conventional (b) Strain gradient (A = 0.1 N)

(c) Strain gradient (A = 1 N) (d) Strain gradient (A = 10 N)

Figure 13: Fields of damage variable χ (see Eq. (33)) for conventional and strain gradient porous

[100]-[010]-[001] single crystal CT specimens with an initial porosity of 1%. The last computed time

step is shown.

Figure 14 shows the load vs CMOD and Jpl vs ∆a curves for the different internal lengths and

initial porosities. As expected, as the strain gradient modulus increases, the CT specimen displays

an increased ductility characterized by a larger maximum load and a slower load decrease in Figure

14a. This behaviour translates into a larger value of Jpl at onset of crack propagation (∆a > 0) and

a steeper rise of Jpl with the crack extension in Figure 14b. In addition, a smaller initial porosity570

leads also to a greater ductility. The conventional model with an initial porosity of f0 = 0.1% predicts

a quasi-brittle behaviour similarly to what predicts the same model with an initial porosity of 1%.

Nevertheless, a higher load is reached before onset of crack propagation with f0 = 0.1%. The value of

Jpl reached at onset is hence much larger for an initial porosity of 0.1% than for an initial porosity of

1%. These results echo the study of Pardoen and Hutchinson (2003) who have shown that the fracture575

toughness is a decreasing function of the initial void volume fraction and an increasing function of the

intervoid distance. In the present work, the strain gradient modulus A controls the internal length of

the material. Therefore, it can be put in parallel to the characteristic intervoid distance X0 used by

Pardoen and Hutchinson (2003).

To study the propagation of cracks at the single crystal scale is a difficult task for materials such580

as austenitic stainless steels with conventional grain sizes of a few tenth of microns. The reason for

that is that the standardised specimens sizes are usually much larger than the grain size. For such
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Figure 14: Load vs CMOD (a) and Jpl vs crack extension ∆a (b) for conventional and strain gradient

porous single crystal [100]-[010]-[001] CT specimen with initial porosity f0 of 0.1% and 1.0%.

polycrystal specimens, the crystal orientation can be measured on the surface but can hardly be

obtained in the bulk of the specimen with non-destructive methods that would allow for subsequent

mechanical testing. In addition the fact that such specimens are composed of numerous grains and585

grain boundaries makes it difficult to interpret the role of the crystal anisotropy on ductility and

toughness. These shortcomings can be overcome for instance by designing model experiments. Small

scale experiments can be considered in order to focus the observation on a few number of grains.

However such kind of investigations do not come without additional complexity, since they involve

the use of small scale experimental techniques and size effects can arise when the specimen size gets590

closer to the characteristic size of the deformation mechanisms. Alternatively, model materials which

can naturally grow large grains (e.g. aluminum alloys) can be used to produce specimens composed

of a few number of grains. These specimens can in turn be used to unravel the role of the crystal

anisotropy in the ductile failure process. Studies of this kind for ductile materials are very scarce in

the literature and are therefore work in progress by the authors in order to confront their numerical595

results to experimental data. Some studies have investigated experimentally the crack-tip stress-strain

field in ductile materials (Shield and Kim, 1994; Kysar and Briant, 2002; Marchal et al., 2006) and

validated the associated theory of stress sectors developed by (Rice, 1987). Following on from this

work, current efforts are thus devoted to the characterization of the role of crystal plasticity on void

growth and coalescence at the crack tip in order to assess the influence of crystal orientation on600

fracture toughness.

5.3. Oligo-crystal CT specimen

In order to investigate the interaction between the crack front and grain boundaries, a CT specimen

composed of an artificial grain microstructure is studied. The specimen is divided in six rectangular

grains along the X 1 direction. Grain boundaries are therefore orthogonal to the direction of crack605

propagation. Figure 15 shows the propagation of a crack in this ideal oligo-crystal specimen with
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the conventional and the strain gradient plasticity models. Each color shown in Figures 15a and 15c

indicates a different initial crystal orientation, while Figures 15b and 15d display the accumulated

plastic slip contour in the polycrystal specimen. Initial crystal orientations of the six different crystals

where selected randomly and are presented in the form of Euler angles in Table 4 following the Bunge610

convention (ZXZ). The inverse pole figures of the six grains are shown in Figure 15e. With the

conventional model, the crack propagates first out of the middle plane when advancing in grain #2.

Then, after reaching the grain boundary between grains #2 and #3, the crack moves straight along

a horizontal plane until it reaches a second grain boundary. Ultimately, the crack bifurcates again

when it starts propagating in grain #4. In grains #2 and #4, in which the crack path is slanted615

with respect to the specimen horizontal symmetry plane, large levels of accumulated plastic slip are

reached and cover wide areas above and below the crack lips. On the contrary, in grain #3, in which

the crack propagates horizontally, much less plastic activity is present in the vicinity of the crack lips.

This observation demonstrates again that all crystal orientations are not equivalent in terms of crack

propagation. The crack path predicted with the strain gradient plasticity model is also slanted in620

grain #2, although the angle with respect to the horizontal axis is smaller than with the conventional

model. The plastic activity covers an even wider area below and above the crack lips as compared to

the conventional model. Interestingly, a pronounced shielding of plastic activity seems to occur at the

grain boundary between grains #2 and #3. In addition, the plastic field is much more non-symmetric

with respect to the horizontal symmetry plane than the plastic field predicted by the conventional625

model.

The load vs CMOD and Jpl vs ∆a graphs shown in Figure 16 display three very distinct regimes

for the conventional model. A different color is used in these plots in order to indicate the grain

in which the crack front is located at the current time step. After the elastic phase, the two grains

displaying substantial plastic activity are characterized by regimes during which the load increases or630

decreases slowly with the CMOD. During these two regimes the crack propagates at a slow pace and

the Jpl vs ∆a curves are thus steep. On the other hand, in between grain #2 and grain #4 the crack

propagates at a fast rate in grain #3. The load drops therefore rapidly and the plastic component of

J increases slowly. The strain gradient plasticity model predicts a tougher mechanical behaviour of

the polycrystal. Since the crack displays more blunting than with the conventional model, the crack635

extension ∆a is smaller. The applied load and measured values of Jpl are consequently larger with

the strain gradient plasticity model.

The microstructure used here is obviously very simplistic and is not meant to be representative

of any real material. Nevertheless, such an idealized situation allows to highlight more precisely the

paramount role of the crystal plasticity anisotropy on the crack propagation and orientation-dependent640

ductility. Although it is not the objective of the present work, such oligo-crystal microstructure could,

to some extent, be relevant for materials obtained by directional solidification such as for example

columnar nickel-based superalloys (Giamei, 2013; Coudon et al., 2019). More importantly, with the

advent of recent manufacturing processes (for instance additive manufacturing) design of complex

35



Table 4: Euler angles (φ1,Φ, φ2) in degrees defining the initial crystal orientation of the six grains of

the polycrystal CT specimen.

grains φ1 Φ φ2

#1 • 3.48 53.17 315.41

#2 � 310.96 84.69 136.94

#3 � 335.60 112.22 83.99

#4 J 76.48 40.56 139.94

#5 I 19.49 111.84 171.00

#6 N 34.35 34.17 267.59

microstructures are now within reach. The model and simulations presented in this work are a step645

forward towards designing and optimizing microstructures in order to fulfill engineering needs. Future

work will be devoted to the simulation of real microstructures and to the comparison of numerical

predictions with experimental data.

5.4. 3D single crystal specimen

Finally, a 3D [100]-[010]-[001] single crystal CT specimen was simulated. In this example, the plane650

strain boundary condition (U3 = 0) was relaxed. The specimen thickness is equal to 12.5 mm. The 3D

CT specimen mesh, shown in Figure 17a, is refined in the area of interest in order to have 18 elements

across the thickness. The full 3D mesh contains 79980 quadratic elements composed each of 8 Gauss

points and totals 1017249 DOF. An initial porosity of 1% and the same hardening material parameters

as in previous section were used. Figures 17 shows the finite element mesh, loading curves for the655

conventional and strain gradient plasticity models and several mechanical fields in the horizontal

symmetry plane of the specimen for the conventional model. Since the stress triaxiality is greater

inside the bulk of the specimen than on its surface, a curved crack front is observed as expected. The

undamaged region is separated from the broken region by a layer of few elements undergoing void

coalescence. In the broken region the stress vanishes. Therefore the crack front can also be noticed660

on the equivalent and mean stress contour plots. Interestingly the crack path is completely straight

in this 3D specimen, while it was slanted with respect to the horizontal axis for the same crystal

orientation in the 2D-plane strain simulation shown in 9a. The large number of elements used in these

simulations suggests that simulations of reasonably large and densely discretized microstructures are

within reach with affordable computation times.665

6. Conclusions

The main achievements and conclusions of this work can be listed as follows:
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(a) Conventional polycrystal (b) Conventional polycrystal

(c) Strain gradient polycrystal (d) Strain gradient polycrystal

(e) inverse pole figure for the polycrystal specimen
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#1• #2� #3� #4J #5I #6N

Figure 15: Accumulated plastic slip fields in the vicinity of a polycrystal CT specimen notch front

obtained with the conventional and strain gradient porous crystal plasticity model. The last computed

time step is shown. In Figures (a) and (c) each color represents a different initial crystal orientation

reported in the inverse pole figure (e).
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Figure 16: Load vs CMOD (a) and Jpl vs crack extension ∆a (b) for porous oligo-crystal CT specimens.

• A strain gradient porous crystal plasticity model was developed in a thermodynamically consis-

tent framework at finite strains. The strain gradient approach relies on a Lagrange multiplier

based extension of the free energy potential in order to account for gradients of an accumulated670

plastic slip scalar field.

• A new criterion for void coalescence onset in single crystals was proposed and validated by

means of porous unit-cell simulations. The criterion relies on a revisited version of Thomason’s

criterion, in which the effective coalescence flow stress is implicitly defined by the stress satisfying

a GTN criterion.675

• An alternative formulation to model void coalescence involving an effective porosity f∗ was

compared to the plastic mechanism based void coalescence model. Both approaches were tested

on single Gauss point simulations at fixed triaxiality and up to failure. An extension of the

plastic mechanism based model was shown to enable control of the softening rate in the post-

coalescence regime.680

• The convergence with respect to mesh size when gradient terms are accounted for was demon-

strated in simulations of a plate under plane strain tensile loading conditions. For sufficiently

dense meshes the macroscopic stress vs strain curves and local damage fields become indeed

mesh size insensitive.

• First of a kind simulations of ductile fracture in porous single- and oligo-crystal plane strain685

CT-like geometries were performed. The strain gradient plasticity model allows to regularize

the width of the damaged area at the periphery of the crack.

• A strongly anisotropic orientation-dependent failure behaviour is highlighted. Ductility and

fracture toughness display a strong dependence on crystal orientation. Toughest orientations

display the highest level of plastic activity in the vicinity of the crack lips and front.690
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Figure 17: Finite element mesh composed of 79980 quadratic elements (1017249 degrees of freedom)

(a), Jpl vs ∆a for conventional and strain gradient models (b) and contour plots in the crack plane

(c-f) for a three dimensional single crystal CT specimen with the conventional model. The crystal

directions [100], [010] and [001] initially coincide with the orthonormal basis vectors X 1, X 2 and X 3

respectively.
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• Crack bifurcation is observed with the conventional model for symmetric and non-symmetric

crystal orientations. Decreasing the initial porosity or increasing the internal length scale in the

strain gradient plasticity model leads to straight cracks for all orientations.

• Large scale simulations of a 3D single crystal CT specimen suggest that simulations of polycrystal

microstructures are within reach with a satisfying resolution of intragranular mechanical fields.695

The model and first simulations presented in this work open the way to the regularized simulation

of ductile fracture in polycrystal microstructures. The framework which was developed can inherently

account for the anisotropy due to crystal plasticity. Anisotropy due to morphological or crystallo-

graphic texture could also be incorporated without additional difficulties. The prospects of this work

include the acquisition of experimental data at the scale of the microstructure. Microscale digital im-700

age correlation or in situ tomography tests would be appropriate techniques to obtain data to which

numerical results could be confronted to. Moreover, numerical performance of implementation of this

sort of models could still be enhanced. Special attention should be given to the treatment of crystal

plasticity constitutive equations, to the conditioning of the differential system in the context of strain

gradient plasticity and to the handling of fully damaged elements within the framework of fracture.705

These issues are possible tracks to further explore in order to enhance the computational efficiency of

this numerical tool.
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Appendix A. Single crystal porous unit-cell boundary conditions710

Periodic porous unit-cell finite element simulations are performed by prescribing a macroscopic

deformation gradient F∼ to a cubic cell containing an initially centered spherical void such that initial

porosity f0 = 1%. Periodic displacement boundary conditions are applied

u = F∼ .x + v v (x+) = v (x−) T (x+) = −T (x−) (A.1)

where u is the displacement field and v the periodic fluctuation. The vectors x+ and x− denote

homologous nodes on opposite faces of the unit-cell. In keeping with Ling et al. (2016) the macroscopic715

deformation gradient F∼ and first Piola-Kirchhoff stress S∼ are related to their microscopic counterpart

by volume averages

F∼ =
1

V tot0

∫

D0

F∼dV S∼ =
1

V tot0

∫

D0

S∼dV (A.2)

where V tot0 denotes the total volume (including the void) of the unit-cell domain D0 in the reference

configuration. It follows that the macroscopic Cauchy stress is given by

σ∼ =
1

V tot

∫

D

σ∼dV =
1

det
(
F∼
)S∼ .F∼

T
(A.3)
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where V tot denotes the total volume (void included, with suitable extension of the fields within the720

voids) of the unit-cell domainD in the current configuration. Macroscopic hydrostatic (σm), equivalent

(σeq) stresses are defined by

σm =
tr (σ∼)

3
σeq =

√
3

2
σ∼
′ : σ∼

′ σ∼
′ = σ∼ − σm1∼ (A.4)

Only axisymmetric loading conditions are considered for which the macroscopic stress tensor and

stress triaxiality ratio can be written as

σ∼ =




σ11 0 0

0 ησ11 0

0 0 ησ11


 T =

σm
σeq

=
1 + 2η

3(1− η)
(A.5)

The simulations are performed at fixed macroscopic Cauchy stress triaxialities T ∈ {1; 1.5; 2; 3}. The725

reader is referred to (Ling et al., 2016) for the numerical implementation of such a condition.

References

Achouri, M., Germain, G., Dal Santo, P., Saidane, D., 2013. Experimental characterization and

numerical modeling of micromechanical damage under different stress states. Materials & Design

50, 207–222.730

Aslan, O., Cordero, N., Gaubert, A., Forest, S., 2011. Micromorphic approach to single crystal

plasticity and damage. International Journal of Engineering Science 49, 1311 – 1325.

ASTM Standard E1820, 2017. Standard test method for measurement of fracture toughness. https:

//www.astm.org/.

Babout, L., Brechet, Y., Maire, E., Fougeres, R., 2004. On the competition between particle fracture735

and particle decohesion in metal matrix composites. Acta materialia 52, 4517–4525.

Barrioz, P., Hure, J., Tanguy, B., 2019. Effect of dislocation channeling on void growth to coalescence

in FCC crystals. Materials Science and Engineering: A 749, 255–270.
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cromechanical modeling of short crack nucleation and growth in high cycle fatigue of martensitic

microstructures. Computational Materials Science 170, 109185.

Lindroos, M., Scherer, J.M., Forest, S., Laukkanen, A., Andersson, T., Vaarac, J., Mäntylä, Antti,
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Physique, Chimie, Sciences de l’univers, Sciences de la Terre 315, 1573–1579.

Pardoen, T., Hutchinson, J., 2000. An extended model for void growth and coalescence. Journal of

the Mechanics and Physics of Solids 48, 2467–2512.

Pardoen, T., Hutchinson, J., 2003. Micromechanics-based model for trends in toughness of ductile

metals. Acta Materialia 51, 133–148.890

Pascon, J.P., Waisman, H., 2020. A thermodynamic framework to predict ductile damage in thermo-

viscoplastic porous metals. Mechanics of Materials , 103701.

Paux, J., Brenner, R., Kondo, D., 2018. Plastic yield criterion and hardening of porous single crystals.

International Journal of Solids and Structures 132, 80–95.

Payet, S.F., Besson, J., Feyel, F., Chiaruttini, V., 2012. Crack initiation and propagation in nonlocal895

ductile media, in: ICDM, p. 117.

Pineau, A., Benzerga, A.A., Pardoen, T., 2016. Failure of metals I: Brittle and ductile fracture. Acta

Materialia 107, 424–483.

Poh, L.H., Sun, G., 2017. Localizing gradient damage model with decreasing interactions. International

Journal for Numerical Methods in Engineering 110, 503–522.900

Potirniche, G., Hearndon, J., Horstemeyer, M., Ling, X., 2006. Lattice orientation effects on void

growth and coalescence in fcc single crystals. International Journal of Plasticity 22, 921–942.

Ramaswamy, S., Aravas, N., 1998. Finite element implementation of gradient plasticity models Part II:

Gradient-dependent evolution equations. Computer methods in applied mechanics and engineering

163, 33–53.905

Reusch, F., Svendsen, B., Klingbeil, D., 2003. A non-local extension of Gurson-based ductile damage

modeling. Computational Materials Science 26, 219–229.

Rice, J.R., 1987. Tensile crack tip fields in elastic-ideally plastic crystals. Mechanics of Materials 6,

317–335.

46



Rice, J.R., Tracey, D.M., 1969. On the ductile enlargement of voids in triaxial stress fields. Journal910

of the Mechanics and Physics of Solids 17, 201–217.

Rousselier, G., 1981. Finite deformation constitutive relations including ductile fracture damage.

IUTAM symposium, in: Nemat-Nasser, S., (Ed.), Three-dimensional constitutive relations and

ductile fracture. North-Holland, Amsterdam, pp. 319–343.

Rousselier, G., 1987. Ductile fracture models and their potential in local approach of fracture. Nuclear915

Engineering and Design 105, 97–111.

Rousselier, G., 2001. Dissipation in porous metal plasticity and ductile fracture. Journal of the

Mechanics and Physics of Solids 49, 1727–1746.

Scherer, J.M., 2020. Strain localization and ductile fracture in single crystals: application to irradiated

austenitic stainless steels. Ph.D. thesis. Paris Sciences et Lettres.920

Scherer, J.M., Besson, J., Forest, S., Hure, J., Tanguy, B., 2019. Strain gradient crystal plasticity with

evolving length scale: Application to voided irradiated materials. European Journal of Mechanics-

A/Solids 77, 103768.

Scherer, J.M., Hure, J., 2019. A size-dependent ductile fracture model: Constitutive equations,

numerical implementation and validation. European Journal of Mechanics-A/Solids 76, 135–145.925

Scherer, J.M., Phalke, V., Besson, J., Forest, S., Hure, J., Tanguy, B., 2020. Lagrange multiplier based

vs micromorphic gradient-enhanced rate-(in) dependent crystal plasticity modelling and simulation.

Computer Methods in Applied Mechanics and Engineering 372, 113426.

Scheyvaerts, F., Onck, P., Tekog̃lu, C., Pardoen, T., 2011. The growth and coalescence of ellipsoidal

voids in plane strain under combined shear and tension. Journal of the Mechanics and Physics of930

Solids 59, 373–397.

Selvarajou, B., Joshi, S.P., Benzerga, A.A., 2019. Void growth and coalescence in hexagonal close

packed crystals. Journal of the Mechanics and Physics of Solids 125, 198–224.

Shield, T., Kim, K.S., 1994. Experimental measurement of the near tip strain field in an iron-silicon

single crystal. Journal of the Mechanics and Physics of Solids 42, 845–873.935
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Wulfinghoff, S., Böhlke, T., 2012. Equivalent plastic strain gradient enhancement of single crystal

plasticity: theory and numerics. Proc. R. Soc. A 468, 2682–2703.

Xue, Z., Pontin, M., Zok, F., Hutchinson, J.W., 2010. Calibration procedures for a computational

model of ductile fracture. Engineering Fracture Mechanics 77, 492–509.

Yerra, S., Tekog̃lu, C., Scheyvaerts, F., Delannay, L., Van Houtte, P., Pardoen, T., et al., 2010.960

Void growth and coalescence in single crystals. International Journal of Solids and Structures 47,

1016–1029.

Zhang, Y., Lorentz, E., Besson, J., 2018. Ductile damage modelling with locking-free regularised gtn

model. International Journal for Numerical Methods in Engineering 113, 1871–1903.

Zhang, Z., Thaulow, C., Ødeg̊ard, J., 2000. A complete Gurson model approach for ductile fracture.965

Engineering Fracture Mechanics 67, 155–168.
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